PHYSICAL REVIEW E, VOLUME 63, 047303
Conditional statistics of temperature fluctuations in turbulent convection
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We find that the conditional statistics of temperature difference at fixed values of the locally averaged
temperature dissipation rate in turbulent convection become Gaussian in the regime where the mixing dynam-
ics is expected to be driven by buoyancy. Hence, intermittency of the temperature fluctuations in this
buoyancy-driven regime can be solely attributed to the variation of the locally averaged temperature dissipation
rate. We further obtain the functional behavior of these conditional temperature structure functions. This
functional form demonstrates explicitly the failure of dimensional agruments and enhances the understanding
of the temperature structure functions.
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In turbulent fluid flows, physical quantities such as veloc-cient, the kinematic viscosity, and the thermal diffusivity of
ity, temperature, and pressure exhibit seemingly irregulathe fluid. When Ra is large enough, the convection becomes
fluctuations both in time and in space. A key issue in turbuturbulent.
lence research is to make sense of these fluctuations. The In turbulent convection, the temperature fluctuations are
central result of the seminal work of Kolmogorov in 1941 also intermittent[7]. As for velocity fluctuations in high
(K41) [1] is that the fluctuating velocity field in high Rey- Reynolds number Navier-Stokes turbulence, it is of interest
nolds number Navier-Stokes turbulence is self-similar ato understand the intermittency of temperature fluctuations in
scales within the inertial range, the range of length scalefigh Rayleigh number convection. Turbulent convection
that are smaller than those of energy input and larger thagoses additional interesting questions of its own. There is the
those affected directly by molecular dissipation. K41 pre-isse of whether and how the characteristics of turbulence
dicted that the velocity structure function{u(x+r)  re affected by the presence of buoyancy. One expects the

_ £ Wi -
u(x)]°) scale as *r with scaling exponents, equal top/3 - jying dynamics to be driven by buoyancy at scales larger

whenr is within the inertial range. Experimental and numeri- , s T Ty —
cal results, however, indicate thg is a nonlinear function 12N the Bolgiano scalég=e>"/[x™(ag) ] [8]. wheree

of p and that turbulent velocity fluctuations are scale depenand x are, respectively, the average energy and temperature
dent in that the shape of the probability density function(variance dissipation rates. On the other hand, for length
(PDP of the velocity differenceu(x+r)—u(x) changes scales smaller thahs, the mixing dynamics is expected to
with the scale even wherr is within the inertial range. This be driven by the inertial force of the fluid motion and the
deviation from the K41 results is associated with intermit-temperature field is effectively passive. Recently, one of us
tency or the uneven distribution of turbulent activity of the (Ching) [9] has analyzed the intermittency of the temperature
velocity field in time and in space. field in turbulent convection. The normalized temperature
Extensive efforts have been devoted to understanding thétructure functions have indeed been found to have different
problem of intermittency or anomalous scaling. In his refinedscaling exponents in the buoyancy-driven and inertia-driven
similarity hypothesis(RSH [2,3], Kolmogorov attributed  regimes.
this intermittent nature of the velocity fluctuations to the spa- |, our present project, we attempt to understand the inter-

tial variations of the energy dis;ipgtion rate. Various mOdel%ittency problem of temperature by separating it into two
have been put forth for the statistics of the locally averagedts: the understanding of the conditional statistics of tem-

energy dissipation rate. The most recent model of She angerature fluctuations at fixed values of the locally averaged

Leveque[4_] proposed a hlgrgrchlcal structure for the mo'tt%-mperature dissipation rate and the understanding of the sta-
ments, which leads to predictions that are in good agreement .. o . .
tistics of the local temperature dissipation. In this Brief Re-

with experiments. This moment hierarchy was later shown tg .
be naturally satisfied by log-Poisson statisfis]. port, we report our study of the first part. The second part of

High Rayleigh number convection has been a well-°Y study is reported e_zlsewhe[r.eO]. This separation aIIovys
studied model system for investigating turbulence. Fluid moUS 10 address especially whether the RSH type of ideas
tion is driven by an applied temperature difference across thwould be fruitful. We shall see that the intermittent nature of
top and bottom plates of a closed experimental cell filledth® temperature fluctuations in the buoyancy-driven regime
with fluid. The temperature field in convection is thus a so-¢an indeed be attributed to variations of the locally averaged
called active scalar. The flow state is characterized by théemperature dissipation rate. Moreover, a change in the sta-
geometry of the cell and two dimensionless parameters: thisstical features of the temperature fluctuations is again ob-
Rayleigh number RaagAL3%/(v«) and the Prandtl number served when the Bolgiano scdlg is crossed. This change
Pr=wv/k, wherelL is the height of the cellA the applied manifests itself as a change in the behavior of the conditional
temperature difference,the acceleration due to gravity, and PDFs of the temperature difference at a fixed value of the
a, v, andk are, respectively, the volume expansion coeffi-locally averaged temperature dissipation rate.
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We use temperature data obtained by Libchaber and co- ‘ T v
workers in the well-documented experiment on low- 10 i E
temperature helium gd41,12 for our analyses. The experi- i : ' ]
mental cell heated from below is cylindrical with a diameter
of 20 cm and a height of 40 cm. A mean circulating flow is

~107 ]
present for R&10%. The temperature at the center of the =
cell, T(t), was measured as a function of timé&Ve evaluate E

the temperature difference between two timeés(t)=T(t
+7)—T(t). The intermittency of the temperature fluctua- 10° £
tions is manifested as a change in the shape of the PDF. of i
ast varies. In our earlier study of this dependencg?], the

dissipative and the circulation time scaleg,and 7., were s Ja. A
identified. A time scale corresponding g is naturally de- 10 4 3 2 1 0 1 2 3 a
fined by 7g= 7. Iz /L. It was showr[13] thatlz can be writ- Y,

ten as

FIG. 1. The conditional PDFB(Y,|x,) versusY, for Ra=6.0
Nul/2L X 10' and y,/x=0.18 for various values of. =8 (dotted ling,
i e— (1) 7=16 (dashed ling =32 (dot-dashed ling =64 (circles, =
(RaPy =128 (squares and 7=256 (triangles. It can be seen that
P(Y,|x,) becomes a standard Gaussian distributEwiid line) for
7> 13~70. All times are in units of the sampling tin¥l/409.6 s.
The conditional PDFs are found to be independeny of

where the Nusselt numbéNu) is the heat flux normalized
by that when there is only conduction. Thug,can easily be
evaluated using the measured values of Nu, Ra, and Pr.

The locally averaged temperature dissipation jates the
spatial average ok|VT|? over a ball of radiug. We esti-
mate it by y,, which is defined as

have the interesting result that the temperature fluctuations at
fixed values ofy, become self-similar and thus nonintermit-
tent in the regime where the mixing dynamics is expected to
2 be driven by buoyancy. In other words, intermittency of the
1 (t+7 g . . . . .
Y.()= _j — , (2) temperature fluctuatlons in th!s puoyancy—dnven regime can
)y (ud) be solely attributed to the variations gf .

In the remainder of this Brief Report, we shall obtain the
and can be calculated using one-point temperature measuremctional dependence of the conditional temperature struc-
ments. Here(u?) is the mean square velocity fluctuation at ture functions(|T,|P|x,) onp, 7, andx,.
the center of the cell. It is illuminating to first work out what functional form is

We start by investigating the conditional PDF Df, at  predicted by simple phenomenology and dimensional agru-
fixed values ofy,.. We consider thos& (t) whose corre- ments. One expecfE,, the temperature difference across a
sponding Iny,(t) assumes a certain value within a small scaler, to depend on, y,, andu,, the velocity difference
ranges, and calculate the conditional PDP$Y .| x,) where across the same scaleIn the inertia-driven regimey, is
related to the locally averaged energy dissipation eatby

aT
at’

T, u,~ (re;) Y3, while in the buoyancy-driven regime, is gen-
Y= (T2 >' (3) erated by buoyancyjf/r~agT,. Hence, we have
" . . (1316, V2 r<lg
As the conditional meanT,|x,) is approximately zero, _ rooAr 4)
P(Y,|x,) is standardized with zero mean and unit standard T ag) Y5 >l

deviation. For a giverr, P(Y,|x,) is found to be indepen-

dent of y, for a range ofy, that contains most of the data. Equation(4) implies that

The conditional PDFs for different values oefare plotted in B

Fig. 1. We measure the value of, in units of y (TP~ (UR)PIOZPI3) P12 ¢ =PIB|y ) r< 7 -

=k((dT/t)>(Z). In the limit 7—0, x,~T?2; therefore the X (U2)PI0LPIS) 205 4 gy PIS  ps

conditional PDF is bimodal for smafl, as seen in the figure.

As 7 increasesP(Y,|x,) changes from bimodal to a func- if T,, x,, ande, have the same scaling behaviorsiras the

tion with one maximum and varies with but for largerr it corresponding quantities with subscript in r with r

becomes a standardized Gaussian distribution and is thus iﬁ=<u§>l’zr.

dependent ofr. Such a change in behavior occurs at If the variations ofy, and e, are both ignored, Eq5)

~7Tg. implies that the temperature frequency power spectrum has a
Hence, a change in the statistical features of the temperacaling » ™~ ""® for frequencyw<wg and w5 for 0> wg,

ture fluctuations is again observed as the Bolgiano scale iwhere wg=2m/75. The former scaling behavior was re-

crossed, demonstrating that buoyancy does have an effect @orted for the temperature frequency power spectra mea-

the characteristics of turbulence in convection. Moreover, thesured in watef13] and helium[14] while the latter was

physical nature of the presently observed change is clear. Weported for that measured in low Pr merc(itys].
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FIG. 2. The logarithm of the normalized conditional temperature

structure functionst(r)E(|TT|F’|XT>/<T§|X,>F’/2 versus Inr for FIG. 4. The scaling exponeri(7) versus Inr for Ra=4.0

) x10°. The time scalesy and 75 are approximately 8 and 50
=7.3x 10 =0. . ) —>d B : : '
Ra=7.3x 10" and x/x=0.43 for various values of. The three respectively, and are indicated by the dashed lines. All times are in

time scalesry, 75, and 7, are approximately 6, 60, and 1750, . . . .
respectively, and are indicated by the dashed lines. All times are iHmtS of the sampling time 1/160.8 s. It can be seen that7) is

units of the sampling time 1/320 s.p=0.5 (circles, p=1.5 (dia- close to 1/2 forr< 74 and can be fitted by a linear function inn

mond3, p—1.75 (triangles, p—2.25 (crossel p—2.5 (squarek (solid ling) for 7> 4. Moreover,b(7)~2/5 atr~1g.
and p=2.75 (pluse$. For 7q<7<7g, Fy(7) can be fitted by a .
power law C,r% (solid lineg and for 7>7 it becomes is independent of. For 7q<<7<7g, we find thatF,(7) can

V27T (p+1)/2] (dot-dashed linésand is thus independent of D€ fitted by a power lavisee Fig. 2, that is,

Now we proceed with the analyses. From the result that Fp(m)=~Cp7%, 7g<7<78. 9
P(Y, x,) is independent of,, we get
This = dependence ofF, echoes that ofP(Y,|y,) for 7

(T APlx=Fp(n)aP(7,x,), (6) <rg. Using Eq.(5), such dependence can be attributed to
the additional variation of the local energy dissipation rate
where even when the local temperature dissipation patés held
fixed. The scaling exponents, are plotted in Fig. 3. Since
a(mx)=WT2lx.). (7)  @=a=0 by definition,a;, has to be a nonlinear function

of p, as is found.

By definition, F,(7)=1. For 7> 15, P(Y,|x, becomes a

standardized Gaussian; thus
2P p+1
F(m>75)= \/ —I'| —— 8 — 0 7
p(T TB) T 2 ( ) %
= — ‘ |
0.20 — ‘ ‘ ‘ ‘ ‘ = 5,0 P
’ ] =-1r A R 7 A
i s = - ‘ 1
0.15 | )] ot a 3 !
[ q = e 7/ | i
r ] £ -2 k) v } |
010 * * £ _ 1 1 L
I é ] | a %02 4 6 s
[ ] Int
& 0.05 % ] -3 . ! . ! . ! . |
i & ] 0 2 4 6 8
0.00 ¢ 0 y Int
r & 1
005 | 0 S 1 FIG. 5. Ina(r,x.)(x,/x)~"? versus Inr for Ra=7.3x 10° for
© g & ] x-/x=0.13 (circles, x,/x=0.35(squarey and y,/x~0.96 (tri-
Y angles. The three sets of data collapse into a single function of
010, 05 10 15 20 25 30 7 =G(7)x*?] confirming Eq.(10). The times are in units of the
p sampling time=1/320 s whiles is in units of the standard deviation

of the temperature fluctuations. Shown in the inset is the average of
FIG. 3. The scaling exponent, versusp for Ra=4.0x 10° the three sets of dataolid line), which can be fitted by a power law
(circles, Ra=7.3x 10 (square} and Ra=6.0x 10* (diamonds. (dot-dashed lingfor 7> 75 (indicated by dashed line
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Next, we analyze the functional dependencerofVe fix
7 and study its dependence g@n. When 7 is not too large,
o(7,x,) indeed scales witly , for a range ofy . that contains
most of the data. The scaling exponélit), however, varies
with 7. When 7 is large, the data scatter. Thus, we have

b(r)

o(7.x:)=G(7)x> (10)

From the relationxT~T§ in the limit of 7—0, one gets
b(7)—1/2 ast—0. Indeed, as shown in Fig. &(7) is

about 1/2 forr<74. It then crosses over to an approximately

linear function of Inr, and has a value of 2/5 at= 5. This

is, therefore, in contrast to the behavior af(,x,)
1/5. 25

~ B2 and o (7, x,) ~ 7%, respectively, in the inertia-

driven (rq<7<tg) and buoyancy-driven regimesrgd<rt
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(I TAP)=F (1) GP(7)(x Py, (12)

Equation(12) implies that the change in the scaling exponent
of the normalized structure functiondT,|P)/(T%)P? ob-
served whenrg is crossed9] is the combined effect of the
changes in ther dependence ofF ,(7) and (X*"). The
comparison of Eq(12) with data will be presented else-
where.

In summary, we have studied systematically the condi-
tional statistics of the temperature fluctuations at fixed values
of local temperature dissipatiop, in turbulent convection.
We have found that such conditional statistics become self-
similar in the buoyancy-driven regime, demonstrating that

<7.) that simple phenomenology and dimensional agruthe intermittency of the temperature field in this regime can

ments would predict{see Eq.(5)]. In Fig. 5, we plot
a(7,x,) (x,1x) "™ for various values of.. The linear fit
of b(7) in In7is used forr>ry. The data for different

be attributed solely to the variations pf . We have worked
out the functional behavior of the conditional structure func-
tions (| T.|?|x,). There is indeed scaling behavior j but

values ofy, collapse to one single curve, thus confirming the scaling exponertt(r) depends onr, contrary to what
Eq. (10). t\)/(v)e take the average of the data to get an estimatgimple phenomenology and dimensional agruments might
of G(7)x™", which is shown in the inset. It can be fitted by predict. We emphasize that thisdependence demonstrates

a power law forr> 75 with an exponent about 0.27.
The temperature structure functio(|3,|°) are related to
the conditional ones at fixed values pf as follows:

ITP)= [ (TP, @

whereP (x,) is the PDF ofy .. Using Egs(6) and(10), we
thus get

explicitly the failure of dimensional arguments. Together
with the knowledge of the statistical properties yf, this
functional behavior should enable us to better understand the
temperature structure functions.
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