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Conditional statistics of temperature fluctuations in turbulent convection
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~Received 28 August 2000; published 28 March 2001!

We find that the conditional statistics of temperature difference at fixed values of the locally averaged
temperature dissipation rate in turbulent convection become Gaussian in the regime where the mixing dynam-
ics is expected to be driven by buoyancy. Hence, intermittency of the temperature fluctuations in this
buoyancy-driven regime can be solely attributed to the variation of the locally averaged temperature dissipation
rate. We further obtain the functional behavior of these conditional temperature structure functions. This
functional form demonstrates explicitly the failure of dimensional agruments and enhances the understanding
of the temperature structure functions.
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In turbulent fluid flows, physical quantities such as velo
ity, temperature, and pressure exhibit seemingly irregu
fluctuations both in time and in space. A key issue in turb
lence research is to make sense of these fluctuations.
central result of the seminal work of Kolmogorov in 194
~K41! @1# is that the fluctuating velocity field in high Rey
nolds number Navier-Stokes turbulence is self-similar
scales within the inertial range, the range of length sca
that are smaller than those of energy input and larger t
those affected directly by molecular dissipation. K41 p
dicted that the velocity structure functionŝ@u(x1r )
2u(x)#p& scale asr jp with scaling exponentsjp equal top/3
whenr is within the inertial range. Experimental and nume
cal results, however, indicate thatjp is a nonlinear function
of p and that turbulent velocity fluctuations are scale dep
dent in that the shape of the probability density functi
~PDF! of the velocity differenceu(x1r )2u(x) changes
with the scaler even whenr is within the inertial range. This
deviation from the K41 results is associated with interm
tency or the uneven distribution of turbulent activity of th
velocity field in time and in space.

Extensive efforts have been devoted to understanding
problem of intermittency or anomalous scaling. In his refin
similarity hypothesis~RSH! @2,3#, Kolmogorov attributed
this intermittent nature of the velocity fluctuations to the sp
tial variations of the energy dissipation rate. Various mod
have been put forth for the statistics of the locally averag
energy dissipation rate. The most recent model of She
Leveque@4# proposed a hierarchical structure for the m
ments, which leads to predictions that are in good agreem
with experiments. This moment hierarchy was later shown
be naturally satisfied by log-Poisson statistics@5,6#.

High Rayleigh number convection has been a we
studied model system for investigating turbulence. Fluid m
tion is driven by an applied temperature difference across
top and bottom plates of a closed experimental cell fil
with fluid. The temperature field in convection is thus a s
called active scalar. The flow state is characterized by
geometry of the cell and two dimensionless parameters:
Rayleigh number Ra5agDL3/(nk) and the Prandtl numbe
Pr5n/k, where L is the height of the cell,D the applied
temperature difference,g the acceleration due to gravity, an
a, n, andk are, respectively, the volume expansion coe
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cient, the kinematic viscosity, and the thermal diffusivity
the fluid. When Ra is large enough, the convection becom
turbulent.

In turbulent convection, the temperature fluctuations
also intermittent@7#. As for velocity fluctuations in high
Reynolds number Navier-Stokes turbulence, it is of inter
to understand the intermittency of temperature fluctuation
high Rayleigh number convection. Turbulent convecti
poses additional interesting questions of its own. There is
issue of whether and how the characteristics of turbule
are affected by the presence of buoyancy. One expects
mixing dynamics to be driven by buoyancy at scales lar

than the Bolgiano scale,l B[ē5/4/@ x̄3/4(ag)3/2# @8#, whereē

and x̄ are, respectively, the average energy and tempera
~variance! dissipation rates. On the other hand, for leng
scales smaller thanl B , the mixing dynamics is expected t
be driven by the inertial force of the fluid motion and th
temperature field is effectively passive. Recently, one of
~Ching! @9# has analyzed the intermittency of the temperat
field in turbulent convection. The normalized temperatu
structure functions have indeed been found to have diffe
scaling exponents in the buoyancy-driven and inertia-driv
regimes.

In our present project, we attempt to understand the in
mittency problem of temperature by separating it into tw
parts: the understanding of the conditional statistics of te
perature fluctuations at fixed values of the locally averag
temperature dissipation rate and the understanding of the
tistics of the local temperature dissipation. In this Brief R
port, we report our study of the first part. The second par
our study is reported elsewhere@10#. This separation allows
us to address especially whether the RSH type of id
would be fruitful. We shall see that the intermittent nature
the temperature fluctuations in the buoyancy-driven reg
can indeed be attributed to variations of the locally avera
temperature dissipation rate. Moreover, a change in the
tistical features of the temperature fluctuations is again
served when the Bolgiano scalel B is crossed. This chang
manifests itself as a change in the behavior of the conditio
PDFs of the temperature difference at a fixed value of
locally averaged temperature dissipation rate.
©2001 The American Physical Society03-1
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We use temperature data obtained by Libchaber and
workers in the well-documented experiment on lo
temperature helium gas@11,12# for our analyses. The exper
mental cell heated from below is cylindrical with a diame
of 20 cm and a height of 40 cm. A mean circulating flow
present for Ra>108. The temperature at the center of th
cell, T(t), was measured as a function of timet. We evaluate
the temperature difference between two times:Tt(t)[T(t
1t)2T(t). The intermittency of the temperature fluctu
tions is manifested as a change in the shape of the PDF oTt
ast varies. In our earlier study of thist dependence@7#, the
dissipative and the circulation time scales,td and tc , were
identified. A time scale corresponding tol B is naturally de-
fined bytB5tc l B /L. It was shown@13# that l B can be writ-
ten as

l B5
Nu1/2L

~Ra Pr!1/4
~1!

where the Nusselt number~Nu! is the heat flux normalized
by that when there is only conduction. Thus,tB can easily be
evaluated using the measured values of Nu, Ra, and Pr.

The locally averaged temperature dissipation ratex r is the
spatial average ofku¹Tu2 over a ball of radiusr. We esti-
mate it byxt , which is defined as

xt~ t ![
1

tEt

t1t k

^uc
2&S ]T

]t8
D 2

dt8 ~2!

and can be calculated using one-point temperature mea
ments. Here,̂ uc

2& is the mean square velocity fluctuation
the center of the cell.

We start by investigating the conditional PDF ofTt , at
fixed values ofxt . We consider thoseTt(t) whose corre-
sponding lnxt(t) assumes a certain value within a sm
ranged, and calculate the conditional PDFsP(Ytuxt) where

Yt[
Tt

A^Tt
2uxt&

. ~3!

As the conditional mean̂ Ttuxt& is approximately zero,
P(Ytuxt) is standardized with zero mean and unit stand
deviation. For a givent, P(Ytuxt) is found to be indepen
dent ofxt for a range ofxt that contains most of the data
The conditional PDFs for different values oft are plotted in
Fig. 1. We measure the value ofxt in units of x
[k^(]T/]t)2&/^uc

2&. In the limit t→0, xt;Tt
2 ; therefore the

conditional PDF is bimodal for smallt, as seen in the figure
As t increases,P(Ytuxt) changes from bimodal to a func
tion with one maximum and varies witht, but for largert it
becomes a standardized Gaussian distribution and is thu
dependent oft. Such a change in behavior occurs att
'tB .

Hence, a change in the statistical features of the temp
ture fluctuations is again observed as the Bolgiano sca
crossed, demonstrating that buoyancy does have an effe
the characteristics of turbulence in convection. Moreover,
physical nature of the presently observed change is clear
04730
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have the interesting result that the temperature fluctuation
fixed values ofxt become self-similar and thus noninterm
tent in the regime where the mixing dynamics is expected
be driven by buoyancy. In other words, intermittency of t
temperature fluctuations in this buoyancy-driven regime
be solely attributed to the variations ofxt .

In the remainder of this Brief Report, we shall obtain t
functional dependence of the conditional temperature st
ture functionŝ uTtupuxt& on p, t, andxt .

It is illuminating to first work out what functional form is
predicted by simple phenomenology and dimensional ag
ments. One expectsTr , the temperature difference across
scaler, to depend onr, x r , andur , the velocity difference
across the same scaler. In the inertia-driven regime,ur is
related to the locally averaged energy dissipation ratee r by
ur;(r e r)

1/3, while in the buoyancy-driven regime,ur is gen-
erated by buoyancy:ur

2/r;agTr . Hence, we have

Tr;H r 1/3e r
21/6x r

1/2, r , l B

r 1/5x r
2/5~ag!21/5, r . l B .

~4!

Equation~4! implies that

^uTtupuxt&;H ^uc
2&p/6tp/3xt

p/2^et
2p/6uxt&, t,tB

^uc
2&p/10tp/5xt

2p/5~ag!2p/5, t.tB ,
~5!

if Tt , xt , andet have the same scaling behavior int as the
corresponding quantities with subscriptr in r with r
5^uc

2&1/2t.
If the variations ofxt and et are both ignored, Eq.~5!

implies that the temperature frequency power spectrum h
scalingv27/5 for frequencyv,vB and v25/3 for v.vB ,
where vB52p/tB . The former scaling behavior was re
ported for the temperature frequency power spectra m
sured in water@13# and helium@14# while the latter was
reported for that measured in low Pr mercury@15#.

FIG. 1. The conditional PDFsP(Ytuxt) versusYt for Ra56.0
31011 andxt /x50.18 for various values oft. t58 ~dotted line!,
t516 ~dashed line!, t532 ~dot-dashed line!, t564 ~circles!, t
5128 ~squares!, and t5256 ~triangles!. It can be seen tha
P(Ytuxt) becomes a standard Gaussian distribution~solid line! for
t.tB'70. All times are in units of the sampling time51/409.6 s.
The conditional PDFs are found to be independent ofxt .
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Now we proceed with the analyses. From the result t
P(Ytuxt) is independent ofxt , we get

^uTtupuxt&5Fp~t!sp~t,xt!, ~6!

where

s~t,xt![A^Tt
2uxt&. ~7!

By definition, F2(t)51. For t.tB , P(Ytuxt) becomes a
standardized Gaussian; thus

Fp~t.tB!5A2p

p
GS p11

2 D ~8!

FIG. 2. The logarithm of the normalized conditional temperat
structure functionsFp(t)[^uTtupuxt&/^Tt

2uxt&
p/2 versus lnt for

Ra57.331010 and xt /x50.43 for various values ofp. The three
time scalestd , tB , and tc are approximately 6, 60, and 1750
respectively, and are indicated by the dashed lines. All times ar
units of the sampling time51/320 s.p50.5 ~circles!, p51.5 ~dia-
monds!, p51.75 ~triangles!, p52.25 ~crosses!, p52.5 ~squares!,
and p52.75 ~pluses!. For td,t,tB , Fp(t) can be fitted by a
power law Cptap ~solid lines! and for t.tB it becomes
A2p/pG@(p11)/2# ~dot-dashed lines! and is thus independent oft.

FIG. 3. The scaling exponentap versusp for Ra54.03109

~circles!, Ra57.331010 ~squares!, and Ra56.031011 ~diamonds!.
04730
t

is independent oft. For td,t,tB , we find thatFp(t) can
be fitted by a power law~see Fig. 2!, that is,

Fp~t!'Cptap, td,t,tB . ~9!

This t dependence ofFp echoes that ofP(Ytuxt) for t
,tB . Using Eq.~5!, such dependence can be attributed
the additional variation of the local energy dissipation rateet
even when the local temperature dissipation ratext is held
fixed. The scaling exponentsap are plotted in Fig. 3. Since
a05a250 by definition,ap has to be a nonlinear functio
of p, as is found.

e

in

FIG. 4. The scaling exponentb(t) versus lnt for Ra54.0
3109. The time scalestd and tB are approximately 8 and 50
respectively, and are indicated by the dashed lines. All times ar
units of the sampling time51/160.8 s. It can be seen thatb(t) is
close to 1/2 fort<td and can be fitted by a linear function in lnt
~solid line! for t.td . Moreover,b(t)'2/5 att'tB .

FIG. 5. lns(t,xt)(xt /x)2b(t) versus lnt for Ra57.331010 for
xt /x50.13 ~circles!, xt /x50.35 ~squares!, and xt /x'0.96 ~tri-
angles!. The three sets of data collapse into a single function
t@5G(t)xb(t)# confirming Eq.~10!. The times are in units of the
sampling time51/320 s whiles is in units of the standard deviatio
of the temperature fluctuations. Shown in the inset is the averag
the three sets of data~solid line!, which can be fitted by a power law
~dot-dashed line! for t.tB ~indicated by dashed line!.
3-3
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Next, we analyze the functional dependence ofs. We fix
t and study its dependence onxt . Whent is not too large,
s(t,xt) indeed scales withxt for a range ofxt that contains
most of the data. The scaling exponentb(t), however, varies
with t. Whent is large, the data scatter. Thus, we have

s~t,xt!5G~t!xt
b(t) . ~10!

From the relationxt;Tt
2 in the limit of t→0, one gets

b(t)→1/2 as t→0. Indeed, as shown in Fig. 4,b(t) is
about 1/2 fort<td . It then crosses over to an approximate
linear function of lnt, and has a value of 2/5 att'tB . This
is, therefore, in contrast to the behavior ofs(t,xt)
;t1/3xt

1/2 ands(t,xt);t1/5xt
2/5, respectively, in the inertia

driven (td,t,tB) and buoyancy-driven regimes (tB,t
,tc) that simple phenomenology and dimensional ag
ments would predict@see Eq. ~5!#. In Fig. 5, we plot
s(t,xt)(xt /x)2b(t) for various values ofxt . The linear fit
of b(t) in ln t is used fort.td . The data for different
values ofxt collapse to one single curve, thus confirmin
Eq. ~10!. We take the average of the data to get an estim
of G(t)xb(t), which is shown in the inset. It can be fitted b
a power law fort.tB with an exponent about 0.27.

The temperature structure functions^uTtup& are related to
the conditional ones at fixed values ofxt as follows:

^uTtup&5E
0

`

^uTtupuxt&Pt~xt!dxt , ~11!

wherePt(xt) is the PDF ofxt . Using Eqs.~6! and~10!, we
thus get
04730
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^uTtup&5Fp~t!Gp~t!^xt
pb(t)&. ~12!

Equation~12! implies that the change in the scaling expone
of the normalized structure functionŝuTtup&/^Tt

2&p/2 ob-
served whentB is crossed@9# is the combined effect of the
changes in thet dependence ofFp(t) and ^xt

pb(t)&. The
comparison of Eq.~12! with data will be presented else
where.

In summary, we have studied systematically the con
tional statistics of the temperature fluctuations at fixed val
of local temperature dissipationxt in turbulent convection.
We have found that such conditional statistics become s
similar in the buoyancy-driven regime, demonstrating th
the intermittency of the temperature field in this regime c
be attributed solely to the variations ofxt . We have worked
out the functional behavior of the conditional structure fun
tions ^uTtupuxt&. There is indeed scaling behavior inxt but
the scaling exponentb(t) depends ont, contrary to what
simple phenomenology and dimensional agruments m
predict. We emphasize that thist dependence demonstrate
explicitly the failure of dimensional arguments. Togeth
with the knowledge of the statistical properties ofxt , this
functional behavior should enable us to better understand
temperature structure functions.
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